Supplementary Material
GIF2Video: Color Dequantization and Temporal Interpolation of GIF images

Abstract

In our main paper, we have proposed GIF2Video, the
first learning-based method for enhancing the visual qual-
ity of GIFs in the wild. It consists of two components that
perform color dequantization and temporal interpolation of
GIF images respectively. In this supplementary material,
we provide more details and results regarding experiments
on GIF-Faces and GIF-Moments datasets, which could not
be included in the main paper due to page limitation.

1. Experiment Details
1.1. GIF creating tools

We use MATLAB(2014a) to create GIF sequences.
More specifically, we use the following function,
[X, map] = rgb2ind(RGB, n, dither_option). It
converts the RGB image to an indexed image X using
minimum variance quantization and optional dithering.
map is a color palette of at most n colors. In our exper-
iments, we set n = 32. As discussed in the main paper,
GIF images often contain undesirable visual artifacts such
as flat color regions, false contours, color shift, and dotted
patterns.

1.2. Architecture of U-Net in CCDNet

Figure 1 illustrate the architecture of the U-Net used in
the proposed CCDNet. For convolutional feature transfor-
mation (blue arrow), two consecutive convolutional mod-
ules with kernel size of 3 are typically used. For feature
downsampling (green arrow) and upsampling (yellow ar-
row), Average Pooling and Deconvolution layers are used
respectively.

1.3. Hyper-parameters for training CCDNet

For data augmentation, we perform random image crop-
ping and horizontal flipping. For data normalization, we
linearly map the pixel values of input GIFs from the range
[0, 255] to the range [—1, 1]. For optimization, we use
ADAM optimizer (81 = 0.5, B2 = 0.999) and a weight de-
cay of 0.0001. For training without adversarial losses, the

Copy & Concatenate

k.

256 512

5]2 512 I I I

128 256 256 128

64 128 Conv-BN-RelLU-Conv-BN-RelLU 128 64
AVgPool (downsample)
Deconv (upsample)

—> Conv (1x1 kernel)
64 64 64 3

Figure 1. Architecture of U-Net in CCDNet.

learning rate starts with 0.0001 and gradually decays (de-
cay ratio v = 0.5) every 10 epochs. The training stops after
60 epochs. For training with adversarial losses, the learning
rate is set to 0.0002 with no decay. The training stops after
30 epochs.

1.4. Dynamic adversarial training of CCDNet

When adversarial loss is included for training the CCD-
Net, it is critical to use a robust training strategy that can
ensure the conditional GAN framework trains stably. We
dynamically control the learning of the generator G and
the discriminator D, depending on the prediction accu-
racy Ace(D) of D on the current input mini-batch. If
Ace(D) < 25%, that means D is under-trained, so we only
train D using current mini-batch. If Ace(D) > 75%, that
means D is over-trained, so we only train G using current
mini-batch. Otherwise when 25% < Acce(D) < 75%, G
and D are jointly trained in this case.

2. More Qualitative Results

In this supplementary material, we present more qualita-
tive results. Please look at the HTML files attached.



